К параметрам орбиты спутника относится также период обращения Т-время между двумя последовательными прохождениями одной и той же точки орбиты. Путь пройденный телом И той же точки

Уникальные фотографии возвращают орловцев на 25 лет назад

Раньше фотодело являлось уделом если не избранных, то весьма небольшого круга россиян. Теперь каждый, кто имеет более-менее современный сотовый телефон - творец. Правда, как правило, самого себя. Но вот парадокс: миллиарды селфи чаще лишь тешат самолюбие. А потому фото, настоящее фото, по-прежнему в дефиците.

Андрей Шевяков

Герой этого материала - обыкновенный школьный учитель. Нет, необыкновенный школьный учитель. Он преподает историю и обществознание в школе № 12 города Орла, ведет кружок краеведения и заведует школьным музеем. А еще - фотографирует. Раньше - «Зенитом», теперь маленьким «Сони». Недавно в школе открылась выставка его снимков. И потрясла детей и взрослых, особенно тех, кто интересуется историей родного города. Потому что фото Андрея Шевякова, сделанные сегодня и 20-25 лет назад с одной и той же точки, стали своеобразными историческими документами.

Андрей Викторович, как вам в начале лихих 90-х пришло в голову отснять Орел? То есть сегодня-то очевидно, что надо было и снимать, и коллекционировать какие-то материальные носители тех уникальных лет, и записывать все, что несло в себе время перелома. Но тогда думали только о выживании, а не о важности, так сказать, исторического момента. Вам было тогда всего 23-24 года, а значит, о какой-то мудрости, наверное, говорить не приходится?

Я полюбил историю, будучи дошколенком. Причина тому - рассказы моей бабушки Марии Митрофановны, в девичестве - Иноземцевой, происходившей из известного и богатого рода мценских купцов, о том, как жилось до революции. «То время» для меня стало самым романтическим, с необыкновенными отношениями между людьми. Вот пастух Володька, который, чтобы облегчить юной бабушке сбор грибов, находил их сам и нанизывал на палочки, чтобы ей было виднее. Или другая история - о том, как она, отличница, была репетитором у своего брата, которому не давалась учеба. Родители платили ей за это 5 рублей золотом в месяц, и на эти деньги ей же что-то покупалось. Или история о том, как у наших родственников умерли родители, осталось шестеро детей, их всех «разобрали» по многочисленным семьям Иноземцевых, и все знали, кто где и чем живет. При этом я рос в окружении предметов того времени: тарелки были сделаны еще при царе, ложки - серебряные…

Взрослея, стал задаваться вопросом: а что, собственно, осталось с тех времен? И понял, что в первую очередь - здания. Я стал их выискивать. В 90-х, когда жизнь была очень трудной и непредсказуемой, понял, что они вообще могут исчезнуть с лица земли. И я взял фотоаппарат, чтобы сохранить память о том, как выглядел Орел.


Болховская, 2. Здание бывшего депо готового платья. Снесено в 2002 г.


Болховская, 2. Пустырь

Ну а спустя годы решил вновь пройти по тем же местам и обнаружил, что очень многое изменилось. Что-то - в лучшую сторону, ну а что-то безвозвратно ушло. Тогда пришла в голову идея отцифровать старые снимки и сделать выставку.

Вашей бабушке она бы понравилась?

Мне кажется, да. Получилось запечатлеть время. А по прошлому всегда ностальгируешь. Вот, к примеру, фото «Богатыри», что на Стрелке: сделанные руками человека сказочные фигуры грели душу, а теперь на этом месте лежит холодный камень, притащенный с кладбища. Или магазин «Разград» - в советское время лучший в Орле. Теперь там разруха…



А вот так выглядит это здание сегодня


Орловское БТИ в прошлом...


И в настоящем

Думаю, многие позабыли, как выглядело в конце прошлого века здание Северного банка, перестроенное в «нулевых». Или вот дом на ул. Ленина, где сегодня располагается Межрегиональное бюро технической ивентаризации: что называется, почувствуй разницу.

Есть даже загадки. К примеру, кому принадлежит женская головка на знаменитых Торговых рядах - на втором этаже, в центре? В 2002 году я встречался с одной москвичкой, жившей когда-то в Орле. И вдруг она меня спросила: «Как поживает Анна Керн?» Я удивился: в Орле есть только табличка на доме, где когда-то жила знаменитая пушкинская муза «Я помню чудное мгновенье, передо мной явилась ты…» На что мне возразили и сказали, что головка на здании Торговых рядов - это и есть изображение Анны Петровны.

Честно говоря, я до сих пор не знаю, так ли это. Но, согласитесь, красиво. Мне кажется, что при реставрации здания к юбилею города, специалисты могли бы учесть это и даже, может быть, усилить какие-то черты лица для большего портретного сходства, наверняка утраченного во время многочисленных покрасок-побелок.


Кому принадлежит женская головка на знаменитых торговых рядах?

Ну а дети поняли вашу выставку?

На старые фотоснимки они смотрят с нескрываемым удивлением, поскольку сегодня живут в совершенно другом городе. Но что поражает: несмотря на юный возраст, отсутствие какого-то специального образования и т.п., все они восхищены красотой старины. То есть нынешние кадры восторга не вызывают, а вот снимки прошлого - да. Говорят: как было здорово!

Услышали бы их чиновники от архитектуры и культуры, все норовящие «улучшить» старый облик Орла путем всевозможных новаций… Ну а что-то новое планируете показать?

Обязательно! Уже практически готова вторая выставка, есть материалы и для третьей. К примеру, зрители увидят прекрасный дом на Ленина, 2, который теперь вообще остался только на фото; задумаются над некоторыми «преобразованиями» - как, например, на Старо-Московской… К слову, серия новых фото будет показана в выставочном зале ДЮСШ «Атлант», так что возможность увидеть, сравнить, задуматься будет у всех желающих.

Из пунктов A и B , расстояние между которыми равно l , одновременно навстречу друг другу начали двигаться два тела: первое со скоростью v 1 , второе — v 2 . Определить, через сколько времени они встретятся и расстояние от точки A до места их встречи. Решить задачу также графически.

Решение

1-й способ:

Зависимость координат тел от времени:

В момент встречи координаты тел совпадут, т. е. . Значит, встреча произойдет через время от начала движения тел. Найдем расстояние от пункта A до места встречи как .

2-й способ:

Скорости тел равны тангенсу угла наклона соответствующего графика зависимости координаты от времени, т. е. , . Моменту встречи соответствует точка C пересечения графиков.

Через какое время и где встретились бы тела (см. задачу 1), если бы они двигались в одном и том же направлении A B , причем из точки B тело начало двигаться через t 0 секунд после начала движения его из точки A ?

Решение

Графики зависимости координат тел от времени изображены на рисунке.

Составим на основе рисунка систему уравнений:

Решив систему относительно t C получим:

Тогда расстояние от пункта A до места встречи:

.

Моторная лодка проходит расстояние между двумя пунктами A и B по течению реки за время t 1 = 3 ч, а плот — за время t = 12 ч. Сколько времени t 2 затратит моторная лодка на обратный путь?

Решение

Пусть s — расстояние между пунктами A и B , v — скорость лодки относительно воды, а u — скорость течения. Выразив расстояние s трижды — для плота, для лодки, движущейся по течению, и для лодки, движущейся против течения, получим систему уравнений:

Решив систему, получим:

Эскалатор метро спускает идущего по нему вниз человека за 1 мин. Если человек будет идти вдвое быстрее, то он спустится за 45 с. Сколько времени спускается человек, стоящий на эскалаторе?

Решение

Обозначим буквой l длину эскалатора; t 1 — время спуска человека, идущего со скоростью v ; t 2 — время спуска человека, идущего со скоростью 2v ; t — время спуска стоящего на эскалаторе человека. Тогда, рассчитав длину эскалатора для трех различных случаев (человек идет со скоростью v , со скоростью 2v и стоит на эскалаторе неподвижно), получим систему уравнений:

Решив эту систему уравнений, получим:

Человек бежит по эскалатору. В первый раз он насчитал n 1 = 50 ступенек, во второй раз, двигаясь в ту же сторону со скоростью втрое большей, он насчитал n 2 = 75 ступенек. Сколько ступенек он насчитал бы на неподвижном эскалаторе?

Решение

Поскольку при увеличении скорости человек насчитал большее количество супенек, значит направления скоростей эскалатора и человека совпадают. Пусть v — скорость человека относительно эскалатора, u — скорость эскалатора, l — длина эскалатора, n — число ступенек на неподвижном эскалаторе. Число ступенек, умещающихся в единице длины эскалатора, равно n /l . Тогда время пребывания человека на эскалаторе при его движении относительно эскалатора со скоростью v равно l /(v +u ), а путь, пройденный по эскалатору, равен v l /(v +u ). Тогда количество ступенек, насчитываемых на этом пути, равно . Аналогично, для случая, когда скорость человека относительно эскалатора 3v , получим .

Таким образом, мы можем составить систему уравнений:

Исключив отношение u /v , получим:

Между двумя пунктами, расположенными на реке на расстоянии s = 100 км один от другого, курсирует катер, который, идя по течению, проходит это расстояние за время t 1 = 4 ч, а против течения, — за время t 2 = 10 ч. Определить скорость течения реки u и скорость катера v относительно воды.

Решение

Выразив расстояние s дважды, — для катера, идущего по течению, и катера, идущего против течения, — получим систему уравнений:

Решив эту систему, получим v = 17,5 км/ч, u = 7,5 км/ч.

Мимо пристани проходит плот. В этот момент в поселок, находящийся на расстоянии s 1 = 15 км от пристани, вниз по реке отправляется моторная лодка. Она дошла до поселка за время t = 3/4 ч и, повернув обратно, встретила плот на расстоянии s 2 = 9 км от поселка. Каковы скорость течения реки и скорость лодки относительно воды?

Решение

Пусть v — скорость моторной лодки, u — скорость течения реки. Поскольку от момента отправления моторной лодки от пристани до момента встречи моторной лодки с плотом, очевидно, пройдет одинаковое время и для плота, и для моторной лодки, то можно составить следующее уравнение:

где слева — это выражение времени, прошедшего до момента встречи, для плота, а справа — для моторной лодки. Запишем уравнение для времени, которое затратила моторная лодка на преодоление пути s 1 от пристани до поселка: t =s 1 /(v +u ). Таким образом, получаем систему уравнений:

Откуда получим v = 16 км/ч, u = 4 км/ч.

Колонна войск во время похода движется со скоростью v 1 = 5 км/ч, растянувшись по дороге на расстояние l = 400 м. Командир, находящийся в хвосте колонны, посылает велосипедиста с поручением головному отряду. Велосипедист отправляется и едет со скоростью v 2 = 25 км/ч и, на ходу выполнив поручение, сразу же возвращается обратно с той же скоростью. Через сколько времени t после получения поручения он вернулся обратно?

Решение

В системе отсчета, связанной с колонной, скорость велосипедиста при движении к головному отряду равна v 2 -v 1 , а при движении обратно v 2 +v 1 . Поэтому:

Упростив и подставив числовые значения, получим:

.

Вагон шириной d = 2,4 м, движущийся со скоростью v = 15 м/с, был пробит пулей, летевшей перпендикулярно движению вагона. Смещение отверстий в стенках вагона относительно друг друга равно l = 6 см. Какова скорость движения пули?

Решение

Обозначим буквой u скорость пули. Время полета пули от стенки до стенки вагона равно времени, за которое вагон проходит расстояние l . Таким образом, можно составить уравнение:

Отсюда находим u :

.

Какова скорость капель v 2 отвесно падающего дождя, если шофер легкового автомобиля заметил, что капли дождя не оставляют следа на заднем стекле, наклоненном вперед под углом α = 60° к горизонту, когда скорость автомобиля v 1 больше 30 км/ч?

Решение

Как видно из рисунка,

чтобы капли дождя не оставляли следа на заднем стекле, наобходимо, чтобы время прохождения каплей расстояния h было равно времени, за которое автомобиль пройдет расстояние l :

Или, выразив отсюда v 2:

На улице идет дождь. В каком случае ведро, стоящее в кузове грузового автомобиля, наполнится быстрее водой: когда автомобиль движется или когда он стоит?

Ответ

Одинаково.

С какой скоростью v и по какому курсу должен лететь самолет, чтобы за время t = 2 ч пролететь точно на Север путь s = 300 км, если во время полета дует северо-западный ветер под углом α = 30° к меридиану со скоростью u = 27 км/ч?

Решение

Запишем систему уравнений по рисунку.

Поскольку самолет должен лететь строго на север, проекция его скорости на ось Oy v y равна y -составляющей скорости ветра u y .

Решив эту систему, найдем, что самолет должен держать курс на северо-запад под углом 4°27" к меридиану, а его скорость должна быть равна 174 км/ч.

По гладкому горизонтальному столу движется со скоростью v черная доска. Какой формы след оставит на этой доске мел, брошенный горизонтально со скоростью u перпендикулярно направлению движения доски, если: а) трение между мелом и доской пренебрежимо мало; б) трение велико?

Решение

Мел оставит на доске след, представляющий собой прямую линию, составляющую угол arctg(u /v ) с направлением движения доски, т. е. совпадает с направлением суммы векторов скорости доски и мела. Это справедливо и для случая а) и для случая б), т. к. сила трения не влияет на направление движения мела, поскольку лежит на одной прямой с вектором скорости, то она лишь уменьшает скорость мела, поэтому траектория в случае б) может не доходить до края доски.

Корабль выходит из пункта A и идет со скоростью v , составляющей угол α с линией AB .

Под каким углом β к линии AB следовало бы выпустить из пункта B торпеду, чтобы она поразила корабль? Торпеду нужно выпустить в тот момент, когда корабль находился в пункте A . Скорость торпеды равна u .

Решение

Точка C на рисунке — это место встречи корабля и торпеды.

AC = vt , BC = ut , где t — время от старта до момента встречи. Согласно теореме синусов

Отсюда находим β :

.

К ползуну, который может перемещаться по направляющей рейке,

прикреплен шнур, продетый через кольцо. Шнур выбирают со скоростью v . С какой скоростью u движется ползун в момент, когда шнур составляет с направляющей угол α ?

Ответ и решение

u = v /cosα.

За очень малый промежуток времени Δt ползун перемещается на расстояние AB = Δl .

Шнур за этот же промежуток времени выбирают на длину AC = Δl cosα (угол ∠ACB можно считать прямым, поскольку угол Δα очень мал). Поэтому можно записать: Δl /u = Δl cosα /v , откуда u = v /cosα , что означает, что скорость выбирания веревки равна проекции скорости ползуна на направление веревки.

Рабочие, поднимающие груз,

тянут канаты с одинаковой скоростью v . Какую скорость u имеет груз в тот момент, когда угол между канатами, к которым он прикреплен, равен 2α ?

Ответ и решение

u = v /cosα.

Проекция скорости груза u на направление веревки равна скорости веревки v (см. задачу 15), т. е.

u cosα = v ,

u = v /cosα.

Стержень длиной l = 1 м шарнирно соединен с муфтами A и B , которые перемещаются по двум взаимно перпендикулярным рейкам.

Муфта A движется с постоянной скоростью v A = 30 см/с. Найти скорость v B муфты B в момент, когда угол OAB = 60°. Приняв за начало отсчета времени момент, когда муфта A находилась в точке O , определить расстояние OB и скорость муфты B в функции времени.

Ответ и решение

v B = v A ctgα = 17,3 см/с; , .

В любой момент времени проекции скоростей v A и v B концов стержня

на ось стержня равны между собой, так как иначе стержень должен был бы укорачиваться или удлиняться. Значит, можно записать: v A cosα = v B sinα . Откуда v B = v A ctgα .

В любой момент времени для треугольника OAB справедлива теорема Пифагора: l 2 = OA 2 (t ) + OB 2 (t ). Найдем отсюда OB (t ): . Поскольку OA (t ) = v A t , тогда окончательно запишем выражение для OB (t ) так: .

Поскольку ctgα в любой момент времени равен OA (t )/OB (t ), то можно записать выражение для зависимости v B от времени: .

Танк движется со скоростью 72 км/ч. С какой скоростью движутся относительно Земли: а) верхняя часть гусеницы; б) нижняя часть гусеницы; в) точка гусеницы, которая в данный момент движется вертикально по отношению к танку?

Ответ и решение

а) 40 м/с; б) 0 м/с; в) ≈28,2 м/с.

Пусть v - скорость скорость танка относительно Земли. Тогда скорость любой точки гусеницы относительно танка также равна v . Скорость любой точки гусеницы относительно Земли есть сумма векторов скорости танка относительно Земли и скорости точки гусеницы относительно танка. Тогда для случая а) скорость будет равна 2v , для б) 0, а для в) v .

1. Автомобиль проехал первую половину пути со скоростью v 1 = 40 км/ч, вторую — со скоростью v 2 = 60 км/ч. Найти среднюю скорость на всем пройденном пути.

2. Автомобиль проехал половину пути со скоростью v 1 = 60 км/ч, оставшуюся часть пути он половину времени шел со скоростью v 2 = 15 км/ч, а последний участок — со скоростью v 3 = 45 км/ч. Найти среднюю скорость автомобиля на всем пути.

Ответ и решение

1. v ср =48 км/ч; 2. v ср =40 км/ч.

1. Пусть s - весь путь, t - время, затраченное на преодоление всего пути. Тогда средняя скорости на всем пути равна s /t . Время t состоит из суммы промежутков времени, затраченных на преодоление 1-й и 2-й половин пути:

.

Подставив это время в выражение для средней скорости, получим:

.(1)

2. Решение этой задачи можно свести к решению (1.), если сначала определить среднюю скорость на второй половине пути. Обозначим эту скорость v ср2 , тогда можно записать:

где t 2 - время, затраченное на преодоление 2-й половины пути. Путь, пройденный за это время, состоит из пути, пройденного со скоростью v 2 , и пути, пройденного со скоростью v 3:

Подставив это в выражение для v ср2 , получим:

.

.

Поезд первую половину пути шел со скоростью в n =1,5 раза большей, чем вторую половину пути. Средняя скорость поезда на всем пути v cp = 43,2 км/ч. Каковы скорости поезда на первой (v 1) и второй (v 2) половинах пути?

Ответ и решение

v 1 =54 км/ч, v 2 =36 км/ч.

Пусть t 1 и t 2 - время прохождения поездом соответственно первой и второй половин пути, s - весь путь, пройденный поездом.

Составим систему уравнений - первое уравнение представляет собой выражение для первой половины пути, второе - для второй половины пути, а третье - для всего пути, пройденного поездом:

Сделав подстановку v 1 =nv 2 и решив получившуюся систему уравнений, получим v 2 .

Два шарика начали одновременно и с одинаковой скоростью двигаться по поверхностям, имеющим форму, изображенную на рисунке.

Как будут отличаться скорости и времена движения шариков к моменту их прибытия в точку B ? Трением пренебречь.

Ответ и решение

Скорости будут одинаковы. Время движения первого шарика будет больше.

На рисунке изображены приблизительные графики движения шариков.

Т.к. пути, пройденные шариками, равны, то площади заштрихованных фигур также равны (площадь заштрихованной фигуры численно равна пройденному пути), поэтому, как видно из рисунка, t 1 >t 2 .

Самолет летит из пункта A в пункт B и возвращается назад в пункт A . Скорость самолета в безветренную погоду равна v . Найти отношение средних скоростей всего перелета для двух случаев, когда во время перелета ветер дует: а) вдоль линии AB ; б) перпендикулярно линии AB . Скорость ветра равна u .

Ответ и решение

Время полета самолета из пункта A в пункт B и обратно в случае, когда ветер дует вдоль линии AB :

.

Тогда средняя скорость в этом случае:

.

В случае, если ветер дует перпендикулярно линии AB , вектор скорости самолета должен быть направлен под углом к линии AB так, чтобы скомпенсировать влияние ветра:

Время полета «туда-обратно» в этом случае составит:

Скорости полета самолета в пункт B и обратно одинаковы и равны:

.

Теперь можно найти отношение средних скоростей, полученных для рассмотренных случаев:

.

Расстояние между двумя станциями s = 3 км поезд метро проходит со средней скоростью v ср = 54 км/ч. При этом на разгон он затрачивает время t 1 = 20 с, затем идет равномерно некоторое время t 2 и на замедление до полной остановки тратит время t 3 = 10 с. Построить график скорости движения поезда и определить наибольшую скорость поезда v макс.

Ответ и решение

На рисунке изображен график скорости движения поезда.

Пройденный поездом путь численно равен площади фигуры, ограниченной графиком и осью времени t , поэтому можно записать систему уравнений:

Из первого уравнения выражаем t 2:

,

тогда из второго уравнения системы найдем v макс:

.

От движущегося поезда отцепляют последний вагон. Поезд продолжает двигаться с той же скоростью v 0 . Как будут относиться пути, пройденные поездом и вагоном к моменту остановки вагона? Считать, что вагон двигался равнозамедленно. Решить задачу также графически.

Ответ

В момент, когда тронулся поезд, провожающий начал равномерно бежать по ходу поезда со скоростью v 0 =3,5 м/с. Принимая движение поезда равноускоренным, определить скорость поезда v в тот момент, когда провожаемый поравняется с провожающим.

Ответ

v =7 м/с.

График зависимости скорости некоторого тела от времени изображен на рисунке.

Начертить графики зависимости ускорения и координаты тела, а также пройденного им пути от времени.

Ответ

Графики зависимости ускорения, координаты тела, а также пройденного им пути от времени изображены на рисунке.

График зависимости ускорения тела от времени имеет форму, изображенную на рисунке.

Начертить графики зависимости скорости, смещения и пути, пройденного телом, от времени. Начальная скорость тела равна нулю (на участке разрыва ускорение равно нулю).

Тело начинает двигаться из точки A со скоростью v 0 и через некоторое время попадает в точку B .

Какой путь прошло тело, если оно двигалось равноускоренно с ускорением, численно равным a ? Расстояние между точками A и B равно l . Найти среднюю скорость тела.

На рисунке дан график зависимости координаты тела от времени.

После момента t =t 1 кривая графика — парабола. Что за движение изображено на этом графике? Построить график зависимости скорости тела от времени.

Решение

На участке от 0 до t 1: равномерное движение со скоростью v 1 = tgα ;

на участке от t 1 до t 2: равнозамедленное движение;

на участке от t 2 до t 3: равноускоренное движение в противоположную сторону.

На рисунке изображен график зависимости скорости тела от времени.

На рисунке даны графики скоростей для двух точек, движущихся по одной прямой от одного и того же начального положения.

Известны моменты времени t 1 и t 2 . В какой момент времени t 3 точки встретятся? Построить графики движения.

За какую секунду от начала движения путь, пройденный телом в равноускоренном движении, втрое больше пути, пройденного в предыдущую секунду, если движение происходит без начальной скорости?

Ответ и решение

За вторую секунду.

Проще всего эту задачу решить графически. Т.к. пройденный телом путь численно равен площади фигуры под линией графика скорости, то из рисунка очевидно, что путь, пройденный за вторую секунду (площать под соответствующим участком графика равна площади трех треугольников), в 3 раза больше пути, пройденного на первую секунду (площадь равна площади одного треугольника).

Вагонетка должна перевезти груз в кратчайший срок с одного места на другое, находящееся на расстоянии L . Она может ускорять или замедлять свое движение только с одинаковым по величине и постоянным ускорением a , переходя затем в равномерное движение или останавливаясь. Какой наибольшей скорости v должна достичь вагонетка, чтобы выполнить указанное выше требование?

Ответ и решение

Очевидно, что вагонетка перевезет груз за минимальное время, если она будет первую половину пути двигаться с ускорением +a , а оставшуюся половину с ускорением -a .

Тогда можно записать следующие выражения: L = ½·vt 1 ; v = ½·at 1 ,

откуда находим максимальную скорость:

Реактивный самолет летит со скоростью v 0 =720 км/ч. С некоторого момента самолет движется с ускорением в течение t =10 с и в последнюю секунду проходит путь s =295 м. Определить ускорение a и конечную скорость v самолета.

Ответ и решение

a =10 м/с 2 , v =300 м/с.

Изобразим график скорости самолета на рисунке.

Скорость самолета в момент времени t 1 равна v 1 = v 0 + a (t 1 - t 0). Тогда путь, пройденный самолетом за время от t 1 до t 2 равен s = v 1 (t 2 - t 1) + a (t 2 - t 1)/2. Отсюда можно выразить искомую величину ускорения a и, подставив значения из условия задачи (t 1 - t 0 = 9 с; t 2 - t 1 = 1 с; v 0 = 200 м/с; s = 295 м), получим ускорение a = 10 м/с 2 . Конечная скорость самолета v = v 2 = v 0 + a (t 2 - t 0) = 300 м/с.

Первый вагон поезда прошел мимо наблюдателя, стоящего на платформе, за t 1 =1 с, а второй — за t 2 =1,5 с. Длина вагона l =12 м. Найти ускорение a поезда и его скорость v 0 в начале наблюдения. Движение поезда считать равнопеременным.

Ответ и решение

a =3,2 м/с 2 , v 0 ≈13,6 м/с.

Путь, пройденный поездом к моменту времени t 1 равен:

а путь к моменту времени t 1 + t 2:

Из первого уравнения найдем v 0:

.

Подставив полученное выражение во второе уравнение, получим ускорение a :

.

Шарик, пущенный вверх по наклонной плоскости, проходит последовательно два равных отрезка длиной l каждый и продолжает двигаться дальше. Первый отрезок шарик прошел за t секунд, второй — за 3t секунд. Найти скорость v шарика в конце первого отрезка пути.

Ответ и решение

Поскольку рассматриваемое движение шарика обратимо, целесообразно выбрать началом отсчета общую точку двух отрезков. При этом ускорение при движении на первом отрезке будет положительным, а при движении на втором отрезке — отрицательным. Начальная скорость в обоих случаях равна v . Теперь запишем систему уравнений движения для путей, пройденных шариком:

Исключив ускорение a , получим искомую скорость v :

Доска, разделенная на пять равных отрезков, начинает скользить по наклонной плоскости. Первый отрезок прошел мимо отметки, сделанной на наклонной плоскости в том месте, где находился передний край доски в начале движения, за τ =2 с. За какое время пройдет мимо этой отметки последний отрезок доски? Движение доски считать равноускоренным.

Ответ и решение

τ п =0,48 с.

Найдем длину первого отрезка:

Теперь запишем уравнения движения для точек начала (момент времени t 1) и конца (момент времени t 2) пятого отрезка:

Выполнив подстановку найденной выше длины первого отрезка вместо l и найдя разность (t 2 - t 1), получим ответ.

Пуля, летящая со скоростью 400 м/с, ударяет в земляной вал и проникает в него на глубину 36 см. Сколько времени двигалась она внутри вала? С каким ускорением? Какова была ее скорость на глубине 18 см? На какой глубине скорость пули уменьшилась в три раза? Движение считать равнопеременным. Чему будет равна скорость пули к моменту, когда пуля пройдет 99% своего пути?

Ответ и решение

t = 1,8·10 -3 с; a ≈ 2,21·10 5 м/с 2 ; v ≈ 282 м/с; s = 32 см; v 1 = 40 м/с.

Время движения пули внутри вала найдем из формулы h = vt /2, где h — полная глубина погружения пули, откуда t = 2h /v . Ускорение a = v /t .

По наклонной доске пустили катиться снизу вверх шарик. На расстоянии l = 30 см от начала пути шарик побывал дважды: через t 1 = 1 с и через t 2 = 2 с после начала движения. Определить начальную скорость v 0 и ускорение a движения шарика, считая его постоянным.

Ответ и решение

v 0 = 0,45 м/с; a = 0,3 м/с 2 .

Зависимость скорости шарика от времени выражается формулой v = v 0 - at . В момент времени t = t 1 и t = t 2 шарик имел одинаковые по величине и противоположные по направлению скорости: v 1 = - v 2 . Но v 1 = v 0 - at 1 и v 2 = v 0 - at 2 , поэтому

v 0 - at 1 = - v 0 + at 2 , или 2v 0 = a (t 1 + t 2).

Т.к. шарик движется равноускоренно, то расстояние l можно выразить следующим образом:

Теперь можно составить систему из двух уравнений:

,

решив которую, получим:

Тело падает с высоты 100 м без начальной скорости. За какое время тело проходит первый и последний метры своего пути? Какой путь проходит тело за первую, за последнюю секунду своего движения?

Ответ

t 1 ≈ 0,45 с; t 2 ≈ 0,023 с; s 1 ≈ 4,9 м; s 2 ≈ 40 м.

Определить время открытого положения фотографического затвора τ , если при фотографировании шарика, падающего вдоль вертикальной сантиметровой шкалы от нулевой отметки без начальной скорости, на негативе была получена полоска, простирающаяся от n 1 до n 2 делений шкалы?

Ответ

Свободно падающее тело прошло последние 30 м за время 0,5 с. Найти высоту падения.

Ответ

Свободно падающее тело за последнюю секунду падения прошло 1/3 своего пути. Найти время падения и высоту, с которой упало тело.

Ответ

t ≈ 5,45 с; h ≈ 145 м.

С какой начальной скоростью v 0 надо бросить вниз мяч с высоты h , чтобы он подпрыгнул на высоту 2h ? Трением о воздух и другими потерями механической энергии пренебречь.

Ответ

С каким промежутком времени оторвались от карниза крыши две капли, если спустя две секунды после начала падения второй капли расстояние между каплями было 25 м? Трением о воздух пренебречь.

Ответ

τ ≈ 1 с.

Тело бросают вертикально вверх. Наблюдатель замечает промежуток времени t 0 между двумя моментами, когда тело проходит точку B , находящуюся на высоте h . Найти начальную скорость бросания v 0 и время всего движения тела t .

Ответ

; .

Из точек A и B , расположенных по вертикали (точка A выше) на расстоянии l = 100 м друг от друга, бросают одновременно два тела с одинаковой скоростью 10 м/с: из A — вертикально вниз, из B — вертикально вверх. Через сколько времени и в каком месте они встретятся?

Ответ

t = 5 с; на 75 м ниже точки B .

Тело брошено вертикально вверх с начальной скоростью v 0 . Когда оно достигло высшей точки пути, из того же начального пункта с той же скоростью v 0 брошено второе тело. На какой высоте h от начального пункта они встретятся?

Ответ

Два тела брошены вертикально вверх из одной и той же точки с одинаковой начальной скоростью v 0 = 19,6 м/с с промежутком времени τ = 0,5 с. Через какое время t после бросания второго тела и на какой высоте h встретятся тела?

Ответ

t = 1,75 с; h ≈ 19,3 м.

Аэростат поднимается с Земли вертикально вверх с ускорением a = 2 м/с 2 . Через τ = 5 с от начала его движения из него выпал предмет. Через сколько времени t этот предмет упадет на Землю?

Ответ

t ≈ 3,4 с.

С аэростата, опускающегося со скоростью u , бросают вверх тело со скоростью v 0 относительно Земли. Какое будет расстояние l между аэростатом и телом к моменту наивысшего подъема тела относительно Земли? Каково наибольшее расстояние l макс между телом и аэростатом? Через какое время τ от момента бросания тело поравняется с аэростатом?

Ответ

l = v 0 2 + 2uv 0 /(2g );

l макс = (u + v 0) 2 /(2g );

τ = 2(v 0 + u )/g .

Тело, находящееся в точке B на высоте H = 45 м от Земли, начинает свободно падать. Одновременно из точки A , расположенной на расстоянии h = 21 м ниже точки B , бросают другое тело вертикально вверх. Определить начальную скорость v 0 второго тела, если известно, что оба тела упадут на Землю одновременно. Сопротивлением воздуха пренебречь. Принять g = 10 м/с 2 .

Ответ

v 0 = 7 м/с.

Тело свободно падает с высоты h . В тот же момент другое тело брошено с высоты H (H > h ) вертикально вниз. Оба тела упали на землю одновременно. Определить начальную скорость v 0 второго тела. Проверить правильность решения на численном примере: h = 10 м, H = 20 м. Принять g = 10 м/с 2 .

Ответ

v 0 ≈ 7 м/с.

Камень бросают горизонтально с вершины горы, имеющей уклон α. С какой скоростью v 0 должен быть брошен камень, чтобы он упал на гору на расстоянии L от вершины?

Ответ

Двое играют в мяч, бросая его друг другу. Какой наибольшей высоты достигает мяч во время игры, если он от одного игрока к другому летит 2 с?

Ответ

h = 4,9 м.

Самолет летит на постоянной высоте h по прямой со скоростью v . Летчик должен сбросить бомбу в цель, лежащую впереди самолета. Под каким углом к вертикали он должен видеть цель в момент сбрасывания бомбы? Каково в этот момент расстояние от цели до точки, над которой находится самолет? Сопротивление воздуха движению бомбы не учитывать.

Ответ

; .

Два тела падают с одной и той же высоты. На пути одного тела находится расположенная под углом 45° к горизонту площадка, от которой это тело упруго отражается. Как различаются времена и скорости падения этих тел?

Ответ

Время падения тела, на пути которого находилась площадка, больше, поскольку вектор набранной к моменту сооударения скорости изменил свое направление на горизонтальное (при упругом соударении меняется направление скорости, но не его величина), значит вертикальная составляющая вектора скорости стала равна нулю, в то время как у другого тела вектор скорости не изменялся.

Скорости падения тел равны до момента столкновения одного из тел с площадкой.

Лифт поднимается с ускорением 2 м/с 2 . В тот момент, когда его скорость стала равна 2,4 м/с, с потолка лифта начал падать болт. Высота лифта 2,47 м. Вычислить время падения болта и расстояние, пройденное болтом относительно шахты.

Ответ

0,64 с; 0,52 м.

На некоторой высоте одновременно из одной точки брошены два тела под углом 45° к вертикали со скоростью 20 м/с: одно вниз, другое вверх. Определить разность высот Δh , на которых будут тела через 2 с. Как движутся эти тела друг относительно друга?

Ответ

Δh ≈ 56,4 м; тела отдаляются друг от друга с постоянной скоростью.

Доказать, что при свободном движении тел вблизи поверхности Земли их относительная скорость постоянна.

Из точки A свободно падает тело. Одновременно из точки B под углом α к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе.

Показать, что угол α не зависит от начальной скорости v 0 тела, брошенного из точки B , и определить этот угол, если . Сопротивлением воздуха пренебречь.

Ответ

α = 60°.

Тело брошено под углом α к горизонту со скоростью v 0 . Определить скорость v этого тела на высоте h над горизонтом. Зависит ли эта скорость от угла бросания? Сопротивление воздуха не учитывать.

Под углом α =60° к горизонту брошено тело с начальной скоростью v =20 м/с. Через сколько времени t оно будет двигаться под углом β =45° к горизонту? Трение отсутствует.

Из трех труб, расположенных на земле, с одинаковой скоростью бьют струи воды: под углом 60, 45 и 30° к горизонту. Найти отношения наибольших высот h подъема струй воды, вытекающих из каждой трубы, и дальностей падения l воды на землю. Сопротивление воздуха движению водяных струй не учитывать.

Из точки, лежащей на верхнем конце вертикального диаметра d некоторой окружности, по желобам, установленным вдоль различных хорд этой окружности, одновременно начинают скользить без трения грузы.

Определить, через какой промежуток времени t грузы достигнут окружности. Как это время зависит от угла наклона хорды к вертикали?

Начальная скорость брошенного камня v 0 =10 м/с, а спустя t =0,5 с скорость камня v =7 м/с. На какую максимальную высоту над начальным уровнем поднимется камень?

Ответ

H макс ≈ 2,8 м.

На некоторой высоте одновременно из одной точки с одинаковыми скоростями выбрасываются по всевозможным направлениям шарики. Что будет представлять собой геометрическое место точек нахождения шариков в любой момент времени? Сопротивлением воздуха пренебречь.

Ответ

Геометрическим местом точек нахождения шариков в любой момент времени будет сфера, радиус которой v 0 t , а ее центр расположен ниже начальной точки на величину gt 2 /2.

Цель, находящаяся на холме, видна с места расположения орудия под углом α к горизонту. Дистанция (расстояние по горизонтали от орудия до цели) равна L . Стрельба по цели производится при угле возвышения β .

Определить начальную скорость v 0 снаряда, попадающего в цель. Сопротивление воздуха не учитывать. При каком угле возвышения β 0 дальность стрельбы вдоль склона будет максимальной?

Ответ и решение

Выберем систему координат xOy таким образом, чтобы точка отсчета совпала с орудием. Теперь запишем кинематические уравнения движения снаряда:

Заменив x и y на координаты цели (x = L , y = L tgα) и исключив t , получим:

Дальность l полета снаряда вдоль склона l = L /cosα . Поэтому формулу, которую мы получили, можно переписать так:

.

,

это выражение максимально при максимальном значении произведения

Поэтому l максимально при максимальном значении = 1 или

При α = 0 мы получаем ответ β 0 = π /4 = 45°.

Упругое тело падает с высоты h на наклонную плоскость. Определить, через сколько времени t после отражения тело упадет на наклонную плоскость. Как время зависит от угла наклонной плоскости?

Ответ

От угла наклонной плоскости не зависит.

С высоты H на наклонную плоскость, образующую с горизонтом угол α =45°, свободно падает мяч и упруго отражается с той же скоростью. Найти расстояние от места первого удара до второго, затем от второго до третьего и т. д. Решить задачу в общем виде (для любого угла α ).

Ответ

; s 1 = 8H sinα ; s 1:s 2:s 3 = 1:2:3.

Расстояние до горы определяют по времени между выстрелом и его эхом. Какова может быть погрешность τ в определении моментов выстрела и прихода эха, если расстояние до горы не менее 1 км, а его нужно определить с точностью 3%? Скорость звука в воздухе c =330 м/с.

Ответ

τ ≤ 0,09 с.

Глубину колодца хотят измерить с точностью 5%, бросая камень и замечая время τ , через которое будет слышен всплеск. Начиная с каких значений τ необходимо учитывать время прохождения звука? Скорость звука в воздухе c =330 м/с.

Ответ

Путь, пройденный телом, при неравномерном движение со стороны υ=f(t), за промежуток времени , равен

7.1.1.Два тела начали двигаться в один и тот же момент из одной точки в одном направление по прямой. Одно тело двигалось со скоростью м/сек, другое со скоростью м/с.На каком расстояние они будут друг от друга через 5 сек?

Решение. По формуле вычислим пройденный путь первым и вторым телом:


7.1.2.Два тела движутся по прямой из одной и той же точки. Первое тело движется со скоростью м/с , второе –со скоростью .В какой момент и на каком расстояние от начальной точки произойдёт их встреча?

Решение. В условие задачи дано, что тела начали двигаться из одной и той же точки, поэтому их пути дол встречи будут равны. Найдём уравнение пути каждого из тел

Постоянные интегрирования без начальных условиях: будут равны нулю. Встреча этих тел произойдёт при ,откуда

или

Решим это уравнение

Откуда

В момент произойдёт встреча этих тел после начла движения.Из уравнений пути находим

7.1.3. Тело брошено с поверхности земли вертикально вверх со скоростью .Найти наибольшую высоту подъема тела.

Решение. Тело достигнет наибольшей высоты подъема в момент t ,когда υ=0 ,т.е.

39,2-9,8t=0 откуда t=4 сек

7.1.4. Материальная точка движется по прямой с переменной ско­ростью, являющейся заданной непрерывной функцией времени t: v = v (t). Определить путь, пройденный телом от момента вре­мени t 0 до момента Т.

Указание . Промежуток времени разделить на n произвольных частей. Длина каждого промежутка времени

∆t k = t k - t k -1 .

В каждом частичном промежутке времени выберем произволь­ный момент - τ k . (Момент τ k может совпадать и с любым из концов отрезка времени ∆τ k).

Вычислим скорость v в этот момент времени. Получится число f(τ k ) Принимаем, что за время ∆τ k движение происходит равномерно. Поскольку при равномерном прямолинейном движении путь, прой­денный телом, равен произведению скорости на время, путь, прой­денный за время ∆τ k , будет приближенно равен f(τ k ) ∆τ k . Сложим пути, пройденные за все частичные отрезки времени.

Приближенное значение пути

(11,10)

За точное значение пути S следует принять предел интеграль­ной суммы (11,10), когда наибольший из промежутков времени ∆t k стремится к нулю:

На основании формулы (10,2) можно записать, что

(11,11)

Таким образом, если задан закон изменения скорости, то путь, пройденный телом, вычисляется с помощью определенного инте­грала по формуле (11,11).

Когда max ∆t k →0, то произведение v k ) ∆τ k - величина беско­нечно малая. Определение искомой величины и в этой задаче свелось к отысканию предела суммы неограниченно возрастающего количества бесконечно малых величин.

7.1.5. Вычислить путь, пройденный свободно падающим в пустоте телом за Т секунд, если известно, что скорость v свободного па­дения в пустоте определяется формулой v = gt (начальную ско­рость v 0 принимаем равной нулю).

Ответ. . Если v 0 ≠0 то v=v 0 +gt, a

В рамках задачи Кеплера спутник движется в плоскости орбиты, проходящей через центр Земли. В так называемой абсолютной или звездной системе координат плоскость орбиты неподвижна. Абсолютная система-это декартова система координат с началом в центре Земли, неподвижная относительно звезд. Ось Z нaпpaвлeнa вдоль оси вращения Земли и указывает на север, ось X направлена на точку весеннего равноденствия, в которой находится Солнце 21 марта в 0 ч по всемирному времени, а ось Y перпендикулярна осям X и Z

Рис. 3. Элементы орбиты носителя съемочной аппаратуры

Выделяют два вида орбит: по отношению к Солнцу – cолнечно-синхронные и к Земле – геостационарную.

Орбиты подразделяют по величине наклона, направлению, периоду вращения и высотам полета космического летательного аппарата. Орбиты с перигеем 500 км, апогеем 71000 км и периодом обращения 24 часа называют геосинхронными.

По значению наклона орбиты подразделяют на: экваториальные, наклонные и полюсные (или полярные)

Экваториальная орбита, величина угла наклона орбиты (i=0°) космический летательный аппарат пролетает над экватором, и если высота аппарата над поверхностью Земли постоянна и равна Н=35786 км, то период обращения КЛА и период обращения Земли совпадут.

При угле наклона орбиты (i=180°), то КЛА вращается в противоположном направлении

КЛА, перемещаясь по орбите в направлении, совпадающем с направлением вращения Земли, будет как бы висеть над поверхностью Земли, находясь все время над одной и той же точкой планеты эта орбита называется геостационарной .

Орбиты наклонные, делятся на прямые и обратные, их траектория проектируется на поверхность Земли в пределах широт -i< φ < i. Прямой спутник движется с запада на восток, его орбита имеет наклонение 0 , обратные спутники движутся с востока на запад, наклонение орбиты находится в пределах 90°

а) б) в)

Рис. 4. а - общий случай орбиты спутника с наклонением 0° < "i" < 90°., б)- экваториальная орбит, в) - полярная орбита

Орбиты, проходящие над Северным и Южным полюсами Земли, и располагающие перпендикулярно экватору называют полярными (полюсными) . Полярные КЛА (i=90°) , субполярные (i~90°)) могут наблюдаться в любой точке земной поверхности. Вследствие вращения Земли проекция траектории полюсного КЛА на поверхность планеты при каждом новом обороте перемещается к западу. На данной орбите работает сеть спутниковой телефонии, наклонение 86,4 градусов и высота 780 км.

Орбиты спутников из-за гравитационного возмущения со стороны других планет, давления солнечного излучения, несферической формы Земли, ее магнитного поля и атмосферы заметно меняются во времени. Поэтому в ходе эксплуатации спутника регулярно проводятся траекторные измерения, и при необходимости его орбита корректируется.

Высота орбиты- это расстояние от спутника до поверхности Земли. Высота орбиты существенно влияет на результаты ДЗЗ. От нее зависят такие характеристики изображения, как полоса обзора и пространственное разрешение. Чем выше спутник находится над поверхностью Земли, тем больше потенциальная полоса обзора и тем ниже пространственное разрешение.

По высотам полета КЛА делятся до 500 км, от 500 до 2000 км, от 36000 до 40000 км. На высоты до 500 км – околоземные орбиты, запускают космические корабли, орбитальные станции и другие КЛА, обеспечивающие возможность детальной съемки в течение относительно короткого времени. До 2000 км от Земли- орбиты искусственных спутников Земли, запускают метеорологические, геодезические, астрономические спутники и другие ИСЗ.

На больших высотах от 36000 до 40000 км – орбиты геостационарных спутников, предназначенные для целей связи, для прослеживания земной поверхности и облачных образований.

Пилотируемые полеты совершаются не выше 600 км, т. к., радиационные пояса, окружающие нашу планету создают опасность для жизни космонавтов. Максимальная интенсивность облучения достигается на высоте около 3000 км.

Самые высокие околоземные орбиты, околосолнечные, лежат на высоте 1,5 миллиона км.

На низкоорбитальных орбитах проходят правительственные и коммерческие системы спутников связи. Для военных спутников-разведчиков высота примерно 150 км (низкоорбитальная) разрешение съемки 10-30 см. Среднеорбитальными ИСЗ обычно считаются спутники с высотами от 2000 км до 35786 км (рис. 5).

Рис. 5. Низкоорбитальные ИСЗ (а) и среднеорбитальные ИСЗ (б).

Для глобальной системы связи на геостационарных орбитах достаточно трех спутников, на орбитах средней высоты (5000-15 000 км) требуется уже от 8 до 12 космических аппаратов, для высот 500-2000 км нужно более 50 спутников.

Если наклонение "i" орбиты равно нулю, то такие орбиты геостационарные (рис. 6,а), не равно нулю, то такие ИСЗ называются геосинхронными (положение относительно Земли рис. 6, б ), солнечно-синхронные орбиты (гелиосинхронные) имеют постоянную ориентацию относительно Солнца.

Ценность солнечно-синхронных орбит состоит в том, что, двигаясь по ней, спутники пролетает над земными объектами всегда в одно и то же время суток, что важно для проведения космической съемки.

Рис. 6. Геостационарный (а) и геосинхронный (б) ИСЗ.

Благодаря близости к полярным орбитам с них можно следить за всей земной поверхностью, что важно для метеорологических, картографических и разведывательных спутников, которые называют спутниками дистанционного зондирования Земли.

Гражданские спутники дистанционного зондирования Земли обычно работают на высотах 500-600 км с разрешением съемки 1 м.

При глобальном метеорологическом мониторинге спутники обычно размещают на геостационарной или высокой солнечно-синхронной, а при региональном – на орбите сравнительно-небольшой высоты (500-1000 км) с наклонением, позволяющим регулярно проводить съемку выбранного района.

Так с геостационарной орбиты можно обозревать значительную часть земной поверхности, ее «заселяют» не только аппараты связи и метеоспутники, но и системы предупреждения о ракетном нападении. Согласно международной конвенции по мирному использованию космического пространства при ООН, и требованиям международного радиочастотного комитета, во избежание радиопомех, угловое расстояние между геостационарными спутниками не должно быть менее 0.5°. Теоретически количество cпутников, находящихся на безопасном расстоянии на геостационарных орбитах, должно быть не более 720 штук. В последнее десятилетие это расстояние между ГСС не выдерживается.

Параметры орбиты для спутниковых навигационных систем:

ГЛОНАСС – 19 100 км с наклонением около 64 градус (рис. 7);

Рис. 7 Группировка спутников ГЛОНАСС

GPS (США), Galileo (Европа), Бэйдоу (Китай) – спутниковые группировки располагаются на круговых орбитах высотой 20 000- 23 500 км с наклонением 55-56 градусов.

Рис.8. Группировка спутников GPS

Спутник, движущийся в земной атмосфере, испытывает аэродинамическое торможение, зависящее от плотности атмосферы на высоте Полета, от скорости спутника, площади его поперечного сечения и массы. Возмущение орбиты за счет аэродинамического торможения содержит регулярную и нерегулярную составляющие. К регулярным возмущениям приводит суточный эффект (ночью, т.е. в конусе земной тени, Плотность атмосферы на данной высоте меньше, чем днем). Движение воздушных масс, влияние потоков заряженных частиц, выбрасываемых солнцем, приводят к нерегулярным возмущениям. Для природоведческих спутников сопротивление атмосферы играет заметную роль только при низких орбитах; при высоте перигея более 500-600 км возмущающее ускорение от неравномерности распределения масс превышает на два порядка и более ускорение от торможения в атмосфере.

При высоте перигея от 500-600 до нескольких тысяч километров к основному возмущающему фактору добавляется давление солнечного света (вместо сопротивления атмосферы). Влияние этого давления проявляется в дополнительных малых периодических возмущениях элементов орбиты. Если же спутник движется так, что регулярно попадает в конус земной тени, то имеют место также и небольшие постоянные изменения элементов. Но ускорение за счет давления света на несколько порядков меньше возмущающего ускорения за счет основного фактора. Еще слабее влияние притяжения Луны и Солнца

Форма Земли – это геоид, полярный радиус которого R П = 6356,8 км, а экваториальный - R Э = 6378,2 км, т.е. экваториальный радиус больше полярного на 21,4 км. Из-за несферичности Земли, плоскость орбиты медленно поворачивается вокруг земной оси в направлении, противоположном вращению ИСЗ (рис. 9).

Рис. 9. Прецессия орбиты ИСЗ

Этот процесс называется абсолютной прецессией. За счёт прецессии орбита спутника может смещаться с угловой скоростью до 9°/сутки, а за счёт поворота эллиптической орбиты - до 15°/сутки. Величина абсолютной прецессии, зависящая от наклонения орбиты, высоты полета, радиуса Земли за сутки составляет [Новаковский]

Солнечная прецессия возникает в связи с тем, что за одни звездные сутки, равные 23 h 53 m , Земля поворачивается вокруг своей оси на 360° + 0,9856°.

Cкорость космических летательных аппаратов.

Для искусственного спутника Земли, движущегося у самой поверхности Земли, т.е. когда высота точки орбиты H =0, а любое расстояние r от центра Земли, равно среднему радиусу Земли, r о = 6371 км, круговая скорость будет равна 7,91 км/с.

В связи с влиянием на движение КЛА сопротивления атмосферы круговая орбита вблизи Земли неосуществима.

Скорость КЛА на высоте 200 км над Землей, равная 7,79 км/с т.е. минимальная скорость аппарата движущееся горизонтально над поверхностью планеты по круговой орбите и необходимая для выведения его на геоцентрическую орбиту называется первой космической скоростью (кругова́я ско́рость). Данную скорость берут для расчета интервала фотографирования при выполнении космических съемок, определения геометрического сдвига изображения и др.

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) - минимальная скорость, которую необходимо придать космическому аппарату, масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него.

Вторая космическая скорость своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, для преодоления гравитационного притяжение Земли и Солнца и уйти за пределы Солнечной системы называют тре́тьей косми́ческой ско́ростью.

Минимально необходимая скорость тела, позволяющая преодолеть притяжение галактики в данной точке называется четвёртой косми́ческой ско́ростью.

error: Content is protected !!